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Chapter 1

Introduction

This volume gives a summary of some of the technical achievements

on Contract No. F33615-86-K-1023.
The overall goals of this contract are to study and determine solutions

for bistatic first order and higher order Uniform Geometrical Theory of
Diffraction terms, that provide an accurate and efficient means to calculate
high frequency scattering from large complex geometries. Algorithms will
be developed to incorporate these techniques into a user oriented computer
code referred to as the RCS - Basic Scattering Code.

This volume presents parts of two theoretical studies that have
been completed Chapter 2 discusses various meth-
ods for determining the first order scattering from flat plate structures. It
presents a newly developed far zone corner (vertex) diffraction coefficient.

Complete details are given in Volume I. Chapter 3 presents a discussion
of a form of edge wave - vertex interaction. It is specifically formulated in

this case for a source excitation. This is an intermediate step for determin-
ing the far zone edge wave solution. More details are given in Volume II.

Other higher order effects are being studied and will be reported on in due
course.
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Chapter 2

Comparison of Methods for
Far Zone Scattering from a
Flat Plate and Cube

2.1 Introduction

The validity of various methods for determining the far zone bistatic scat-
tering from a flat plate and convex flat plate structure such as a cube is
presented in this paper. This is accomplished by comparing the meth-
ods in various basic situations. The specific techniques to be compared
in this study are the classical equivalent currents with "stripping" [3], the
previous corner diffraction coefficient [3], the newly developed equivalent
currents by Michaeli [4], and an extension to this method cast in the form of
a Uniform Geometrical Theory of Diffraction (UTD) far zone corner diffrac-
tion coefficient [1]. In addition, the Method of Moments (MOM) using the
Electromagnetic Surface Patch (ESP) code [5] and measurements from The
Ohio State University ElectroScience Laboratories compact range are used
to further validate the results.

A recent paper by Ludwig [6] compares three methods for backscatter-
ing from a cube, that is, the MOM using the Numerical Electromagnetics
Code (NEC-MOM), physical optics (PO), and the previous UTD corner
diffraction solution. In this paper, it will be shown that methods which
give comparable results for backscatter can differ for bistatic scattering.
The emphasis here is to present basic examples that can be used to val-
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idate existing codes and to suggest a numerically efficient and accurate
method for convex flat plate structures to first order.

An approximate expression for the far zone field scattered by the vertex
of a finite perfectly conducting wedge is presented in this regard. The solu-
tion is cast in the form of the UTD and is based on asymptotic equivalent
currents found using modified PTD concepts [4,1]. The faces of the wedge
must be flat (the normal to each individual face is a constant everywhere on
the face except at the edge) and the edges must be straight. For plane wave
incidence from an arbitrary direction, the first order contribution from each
vertex to the far zone scattered field is obtained.

Since diffraction is a local phenomena at high frequencies the results
obtained for a finite wedge may be applied to much more complex bodies
made up of simple shapes. The field scattered by a three-dimensional shape
constructed from flat plates may be approximated to first order as the sum
of the contributions from each individual corner. The first order solution
should be reasoaably accurate in or near the specular regions as long as
the object is convex. A convex body is defined here as a closed surface
made up of flat plates such that all of the c'terior wedge angles, taken
between faces and exterior to the surface, are greater than 180 degrees. A
simple example of an object that does not meet this requirement is a corner
reflector. In this case, the effect of the interaction between the faces must
be taken into account. Higher order effects such as double diffraction (7]
and edge waves [8] are not considered in this chapter.

Note that the results presented in this paper are for a parallel ray type
solution, that is, for a radar cross section result. The NEC - Basic Scat-
tering Code (NEC-BSC)[9] is a near zone formulated code, that is it has
a finite range involved. The UTD solutions are slightly different for this
non-parallel ray case. The capabilities of the NEC-BSC and a comparable
far zone code called the RCS-BSC are discussed in Reference (10].

2.2 Theoretical Background

There are many approximate solutions to the scattered field from a finite
perfectly conducting wedge. Physical Optics and its extension the Physical
Theory of Diffraction [11) is surface and edge current based. Geometri-
cal Optics (GO) and its extensions the Geometrical Theory of Diffraction
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(GTD) [12] and the Uniform Geometrical Theory of Diffraction [13] are ray
based. The Method of Equivalent Currents (MEC) [14] is an intermediate
type solution that was developed to handle caustic regions in the GTD.
This has been augmented with the concept of stripping to provide better
answers for flat plate problems (3]. Recently, Michaeli [15] showed a more
rigorous approach in deriving equivalent currents. This was shown to be re-
lated to the incremental length method of Mitzner [16] by Knott [17]. These
equivalent currents still had singularity problems that have been remedied
by Michaeli [4] using a skewed coordinate system. Ufimtsev also derived a
similar solution [18,191.

The above solutions can be cast in a corner diffraction coefficient form.
These UTD ray type solutions have the advantage of being efficient for
far zone flat plate problems since only the fields scattered from the corners
need to be added. It also has the advantage that the results correlate to the
scattering centers seen in high resolution measurements. Just the corner
diffraction coefficient forms are outlined in this section.

A previous diffraction coefficient for a corner formed by the intersection
of two straight edges was derived by Burnside and Pathak [3]. It is based on
the asymptotic evaluation of the ladiation integral containing the equivalent
currents of Ryan and Peters [14]. The result was then empirically modified
so that the diffraction coefficient would not change sign abruptly as it passes
through the false shadow boundaries. It was derived for spherical wave
incidence and remains valid for cases when the diffraction point is near the
corner since the integral was evaluated for a saddle point near an end point;
however, only the far zone result is shown here. The corner diffracted field
due to one corner and one edge in the case of plane wave incidence and a
far zone receiver is given by

E _- (Q: Dc(,0,f. c e-J "
E1_ (2.1)

Ec I [E,,(Q,)Dh(0,4"', #-113-0  s9
D = Ch (Q,) (cosi3, + cos•o) (2.2)

C..h(Q,) 2nV-sinf• {[Dc( - 0') + Dc (0-4')]

S[Dc(d + 0') + Dc(O + 0')]} (2.3)
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Figure 2.1: Definition of angles for the Previous Corner Diffraction Coeffi-
cients.

Dc,(+) = Do,40) F 2 $.a-(- O 1 (2.4)
0 L2ra(%±3)(24

a(#) = 2.cos(2 (), a+(4) = 2cos2 (2n••% -) (2.5)

where N•: is the integer which most nearly satisfies 2nirNT - = T:Wr, and

Dot (7) = cot f (2.6)S2n

0, = 7 (2.7)

F (z) = 2j I-I ie"z j e-? 2 dr (2.8)

where the angles are shown in Figure 2.1. The sign on the diffraction
coefficient may be plus or minus depending on which endpoint of the edge
is being considered. The correct sign in front of the C,,h terms in Equation 2
is chosen based on the direction edge vector shown in Figure 2.1.

It is assumed that the incident field, and therefore the scattered field,
is a time harmonic field with time dependence given by ejwJt, which is sup-
pressed.
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The new far zone corner diffraction solution is based on the PTD and
cast into the form of the MEC and then into a UTD diffraction coefficient.
This is done as follows. The PO is fi-st used to approximate the currents
resulting in a double integral over the surface. Stokes theorem is then -ap-
plied to reduce the equation to a line integral [20,211. The Michaeli currents
are added to produce a total first order MEC result. This integral is then
evaluated using the method ot stationary phase to obtain the contribution
from each corner [221.

The new corner diffraction coefficients are given in a form similar to
previous expressions for diffraction coefficients:

[V~~j[C]~ (2.9)E; 0' Dh E;, s 29

D c4=k ( + ) [dLO + d , TD, - dP02 ] (2.10)
o~h2 ±47-k cos3-Z ro 0) #,1,1 ,,h2 oh

where the plus or minus sign is chosen depending on which endpoint con-
tribution is being calculated. The minus sign is used for the corner con-
tribution associated with the negative t-axis, while the plus sign is used
for the corner contribution associated with the positive t-axis. The edge
fixed coordinates shown in Figure 2.2 are chosen such that fi is th,- outward
normal of the O-face, i is tangent to the edge, the positive b-axis lies on
the O-face, and x b × ii. The expressions for dLP, dTD, and do, 2 are

given by (0-face contribution only)

it ([ir(y'' 00___cot

h,2 2 h,2 4 4

S-,r - (-t + C') at '7r + (+ (2.11)

1 cs(a,7r -a) cot (L a (a

h,2 2l h,2 4'4
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[cot (r - (cr + q')) - cot 4+ + ')]}4(2.13)

C(6,e)in (2.14)
sinfl

sin b
sin ~

c2(6,e) s-n62.5

C2(6,) sin= (coti0cosg +cotfl Cose) (2.16)sin 6co

sin # cos +Cos/# - cosg #')
2

cos7 - sin/3' + sin #'(sin /3 cos 0 + sin P' cos4') (2.17)

C sin/ Pcos 4 (cosa - cos 3') cosf3 (2.18)

sin/3 ' sin 2 /3'

cos- 1  = -JIn (A + ý 1) (2.19)

yr., - I Vri - 1 -1 < 1 (2.20)V I' - A>I

Ui = 1 ,r-0'><0 (2.21)

where the + sign is associated with dhk 2, dh4°, dvTD, dfD,dP°,and dpo
while the - sign is associated with the d.P° dUTD, and di"° terms. The
angles are defined in Figure 2.2. Since only convex structures are consid-
ered here proper shadowing of the rays is fairly simple. The shadowing of
the incident field is accounted for by E,0 and 4 which are the compont..ts
of the GO incident field. The ihadowing of the diffracted ray is more com-
plicated. The contributions ham the LPO and PO components, ,,P and

h.,."2, are present everywhere. The UTD components, d a.r s
like diffracted fields. They do not contribute if the observation point is
inside the wedge (0 > nr).

For the special case of a flat plate (n = 2) the contribution from both
faces may be found using

d1 a S'c a (f'-') [cot cot ( -4

7



Edge of
Interest n

t

Figure 2.2: Definition of the Angles used in the New Corner Diffraction
Coefficients.

4 4 1

4 4(2.23

•i or - < 0 (2.25)

dL~TD 1 'Ir -a~o > 0

where -, a, and the other variables have been defined previously.

It is interesting to note that by writing the equations for the Michaeli
equivalent currents and the new corner diffraction coefficients in cotangent
form provide more insight into the connection of the new solutions with the
previous methods. The new parameters separate out the optics currents and

diffraction currents. This separation manifests itself in new parameters for
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Y

Figure 2.3: Two wavelength plate in the x-z plate.

the • angles. They arise from the asymptotic evaluation of the currents in
the skewed coordinate system chosen in physically meaningful directions.
The LPO factor (-y) is related to the projection of the average of the incident
and diffraction planes on to the plane of the plate [1]. The PO and UTD
factor (a) relates to the projection of the Keller diffraction cone on to the
plane of the plate. It is easy to see in this form that in the Keller directions
the LPO and PO cancel, leaving the UTD result formally used in many
solutiots.

2.3 Comparisons

The first example compares the Ryan and Peters equivalent currents, the
previous and new corner diffraction solutions. The simple example of
backscatter from a two wavelength square plate lying in the x-z plane,
as shown in Figure 2.3, is used. This illustrates that for backscatter these
different methods produce very similar results, except for the very low level
regions.

The co-polarized fields, in the principal plane, calculated using the three

9



-New Corner Diffroction
.. Ryan/Peters Equiv. Currents

- Prey. Corner Diffroction

S.. ... .. .... •" . . ... t . ........ ......... . . . . .

0 :

0 30 60 gO 00 50 300 (deg.)

Figure 2.4: Backscatter from a 2 wavelength plate (8 = 900 pattern).

different methods are shown in Figures 2.4 and 2.5. All three methods
give essentially the same results for the principal plane pattern cuts shown
here. This is not surprising since the major contributions to the fields
are the scattering from the two edges in their Keller cone directions. The
new corner diffraction solution reduces to the Ryan and Peters equivalent
current solution for points on the Keller cone (11, and the previous corner
diffraction solution is essentially the same as Ryan and Peters equivalent
current solution for most regions of space. The results in Figure 2.5 are for
the horizontal (uk) polarization. For a knife edged plate such as this, the
scattered field should be zero in the plane of the plate. Note that this is
not the case in these first order results. The higher order terms (i.e. the
double, triple etc. diffractions) produce the null for this polarization when
they are included.

For patterns away from the principal plane, the higher levels are the
same but the lower levels differ. This is illustrated by taking a conical cut
(0 = 600) for the two wavelength plate. The results for the same three
methods used previously are shown in Figures 2.6 and 2.7. In this case
the methods agree well for the main lobe, however, they differ in the lower
levels of the pattern.

10



New Corner Diffraction I
S.... Ryan/Peters Eqiv. Currents
-.- Prev. Corner Diffraction

... .. . .. . ... . .. ...3 1 I i !

........ .......... ..... ......... ......... .........SI i i 1 i ! i i

.......... T ......... ..... r ......... r. .

" .......... .. . ..- ... ....... Iq.... •.... --. ......... ......... .........
b 0 IO I 0 I

0 30 0 0 @ 0 0

0 (deg.)

Figure 2.5: Backscatter from 2 wavelength plate (9 900 pattern).

- New Corner Diffraction
*.... Ryan/Peters Eqaiv. Currents
- - Prey. Corner Diffraction

I I I I I I I I
I I i I I JL I I I I

I I I I I I 1\I I I I I
.* , ...... i......I ..... ..... I......I I.4 .-\.. ..... i...... I ..... ..... .....

S........ ....... . ........ . ... ........

I I I J I I I I , t i I
I I I I,',|I ! II" I I

o 0 610 ai g o o 0
* (de)

Figure 2.6: Backscatter from 2 wavelength plate (8 = 600 pattern).
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- New Corner Diffroction
-.... Ryon/Peters Eqtiv. Currents
-- Prey. Corner Diffroction

T. • ... :. ..i .. . . . .. ! i.... . ! / \'t...... .: ..... .....i • ......... ... ...

93
S.. . ... . ..:.. .. . 1 . . . . . . . . ... . .. . .• . .. . . . .. . ..7......... "•........

S.. .. t .. ... . ..... . .. ....... .. .. .... .. .. .. ...-.. .. ... .. ..

0 30 0 0 20 0 g W s

$ (deg.)

Figure 2.7: Backscatter from a 2 wavelength plate (0 = 600 pattern).

The differences in the three methods mentioned earlier are greatly in-
creased for bistatic scattering problems. The bistatic scattering from a
square plate two wavelengths on a side is examined to illustrate the point.
The complete scattering matrix (all four values of a) is found for a plate in
the x-y plane with a fixed source located at 0' = 450 and 0' = 00 as shown
in Figure 2.8. The results for the 0 = 60* pattern cut are compared with
the previous corner diffraction solution and Method of Moment calculations
for co-polarized fields in Figures 2.9 and 2.10. Similarly the results for the
cross-polarized fields are given in Figure 2.11 and Figure 2.12. Overall the
new solution agrees well with the Method of Moment calculations and does
not exhibit the discontinuities which appear near 0 = 2400 and 0 = 3000
in the previous corner diffraction solution. The discontinuities in the pre-
vious corner diffraction solution are caused by the so called false shadow
boundaries where the associated two-dimensional problem passes through
a shadow boundary, but the three-dimensional problem in reality does not.
The Ryan and Peters equivalent current results are not shown here, but
they behave differently for similar reasons; that is, the solution still con-
tains two dimension information in regions that it should not. In the region
irom 0 - 600 to 1200 (i.e. near the plane of the plate) the new solution and
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Idg 4 • 0-.I /

Figure 2.8: 2A square plate in the x-y plane with a fixed source at O = 450
and ki 0.

New Corner Diffroction

Prey. Corner Diffraction.....Method of Moments .. .. i.. .

N~

j I i

b I Po ....... ! .......... ..... ... ....... ...........\. I.. ...... . ....... .. .t .................iii II

.. ',. Ii • ' I

! I \I~,! - t I II I , .

0 W0 120 W0 240 300 360
E (deg.)

Figure 2.9: Co-polarized RCS in the 4) 600 plane of a 2A square plate
with a 60 polarized fixed source at 0 = 450, 411 00.
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-L_ •New Corner Diffraction
S....Method of Moments i

Prey. Corner Diffroction i
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i,., Sii ii
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Figure 2.10: Co-polarized RCS in the 4' 600 plane of a 2A square plate
with a 4" polarized fixed source at 0'= 45', 4i 00

-New Corner Diffroction
S.... Method of Moments

-- Prey. Corner Diffraction i
I i I I II j I

. I . ...... I ... . .Il i i- I' , i
I I ii I ' I\ ,*

.- 0 • .... .... . .... ... ... ... ... ... .. ...... .... ......../ -r I I.

-, i+

a so go 0 240 3 0 3
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Figtire 2.11: Cross-polarized RCS in the =600 plane of a 2A square plate
with a 60 polarized fixed source at 0' = 45', 0'~ = 00.
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-New Corner Diffroction
Method of Moments

--- Prey. Corner Diffroction

I 1 1

*~~ . .... * . .* ~ .... . . .

.. ... . . . . . . . . . ..... . ... .... .. .

0 iU ob 10 240 3W no
e (deg.)

Figure 2.12: Cross-polarized RCS in the 4,=600 plane of a 2A square plate
with a 4,' polarized fixed source at 091 450, 4'=0*.

the Method of Moments solution differ by more than 20 dB. It is suspected
that most of these differences are due to the effects of higher order terms
(double and triple diffraction, edge waves) which are not included in the
new solution.

In this example the new solution is compared to backscatter measure-
ments [23] made at 10 GHz on a 6" cube. The geometry of the cube,
tilted 450 in the x-z plane, is illustrtted in Figure 2.13. The results for
the H-plane and E-plane patterns taken in the x-y plane are given in Fig-
ures 2.14 and 2.15, respectively. The results agree well to first order over
most regions of the pattern. The discrepancies are probably due to a com-
bination of higher order terms not being included in the analysis and in
measurements errors. The error in the measurements is likely two fold.
First the faces of the cube model were misaligned slightly so they did not
form edges as sharp as may be required. Secondly, it seems that there was
some deviation from the desired pattern cuts as can be seen from the lack of
symmetry in the measured patterns. In any case, they confirm the validity
of the new corner diffraction solution within first order accuracy for wedge
type structures.
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z

Figure 2.13: 6" Cube tilted 45* in the x-z plane.
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Figure 2.14: H-plane pattern for 6" cube tilted 450 in the x-z plane.

-- Corner DiffractionL""- Measureent. ,1

0 30 60 90 120 •0 150
, (deg.)

Figure 2.15: E-plane pattern for 6" cube tilted 450 in the x-z plane.
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2.4 Discussion

The new corner diffraction coefficient in the above examples has been shown
to provide improved results over other methods, especially in bistatic sit-
uations. The Michaeli equivalent currents have not been shown since they
provide the same results as the new corner diffraction coefficient. Certain
properties of these new solutions, however, may still cause patterns taken
in some regions of space to be discontinuous.

It has been shown [4,1] that Dc and D' do not tend to definite limits
as . -+ c, (i.e. the intersection of the associated half-plane and the Keller
cone), where & = /sin/f' + bcos #', but they remain bounded. In practice,
this means that both Dc and Dc, and therefore E, and E;, are discontin-
uous at this point in the pattern. A simple example illustrates how this
discontinuity can affect a pattern. The bistatic RCS from the flat plate
shown earlier in Figure 2.8 is considered. The source, linearly polarized
iii the 4' direction, remains fixed at 06 = 450 and 0' = 0* while the pat-
tern is taken near the x-y plane (0 = 890). The bistatic RCS is given in
Figures 2.16 and 2.17 for the co-polarized and cross polarized fields, re-
spectively. The abrupt null at , ; 135* in the co-polarized pattern and
the spike at the same location in the cross-polarized pattern are due to
discontinuities in the contribution from edge 4 (indicated in Figure 2.8).
The point qb • 1350 coincides with /3, = #4' and 0 4 • 0 where /34, ', and 04

are the edge fixed coordinates for edge 4. Due to the geometry 34 i q and
q04 ;z 8 so the discontinuity in o,6 is due to the discontinuity in Dc and,
likewise, the discontinuity in asek is due to the discontinuity in D',.

Therefore, the discontinuity in the new diffraction coefficients at the
intersection of the Keller cone and the infinite half plane associated with
the edge (/3 = /3' and 4 = 0) may be expected to cause discontinuities
or narrow spikes depending on the polarization and the pattern cut. As
the examples illustrate these disturbances only affect a typical pattern cut
for around 50 to 10'. In addition, they are in the low level regions of the
returns.

It is easily seen that the diffraction coefficients Dc and Dc are discon-
tinuous as the source passes through the half plane 0' = ir. In the general
case of bistatic scattering, these discontinuities in the sign of the field scat-
tered by a corner will result in discontinuities in the total scattered field.
However, the diffraction coefficients are continuous here (4" = ir) for the
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Figure 2.16: RCS for the 0 = 890 cut of a 2A square plate with a k polarized
fixed source at 0' = 450, Oi 00.

special case of backscatter.

2.5 Conclusions

The objective of this paper has been to compare different methods for
the analysis of the high frequency far zone scattering from flat plate and
convex flat plate type structures. Ryan and Peters equivalent currents and
the previous corner diffraction coefficient are compared with the Michaeli
equivalent currents and the new corner diffraction coefficient. The method
of moments and measurements are also used to validate the solutions.

It has been shown that for backscatter all the methods compare rea-
sonably within engineering accuracy. For bistatic scattering, however, the
two dimensional nature of the old methods lead to inaccuracies. The newer
methods, based on more rigorous three dimensional analysis, remove most
of these problems.

A new corner diffraction coefficient is presented that provides an efficient
and accurate solution to within first order. It provides the same level of
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- ýCorner Diffraction.
-. Moment Method

'<I
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* (deg.)

Figure 2.17: RCS for the 0 - 890 cut of a 2,\ square plate with a d' polarized
fixed source at 0' =- 45, ' = 0o'.

accuracy as the Michaeli equivalent currents with the added benefit of not

needii.g integrations for flat plates. All the optics and edge scattering

effects have been lumped into the corners of the plate with nice physical

interpretations.
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Chapter 3

Edge Wave Vertex and Edge
Diffraction

3.1 Introduction

The diffraction of acoustical waves by the tip of an elliptical perfectly con-
ducting cone was studied by [24]. Satterwhite and Kouyoumjian [25] ex-
amined the vector electromagnetic problem and presented a Green's dyadic
for a source radiating in the presence of an angular sector. However, their
solution, expressed in terms of non-closed form Lami functions, is cumber-
some for numerical calculations. Furthermore, it has not so far appeared
possible to asymptotically identify a "corner diffraction coefficient" from
this eigenfunction representation.

Recently, Burnside and Pathak [26] proposed a corner diffraction coeffi-
cient which successfully predicts the corner effect of numerous plate struc-
tures. Their solution is based on the asymptotic evaluation of the radiation
integral involving the equivalent currents that would exist in the absence
of the corner. A corner diffraction term is then established by empirically
modifying the final result. Sikta [8] applied a limiting process to the co-
efficient presented in [26] to derive the wave diffracted by the corner and
propagating along one of the edges of a plane right angular sector. By in-
troducing an empirically established "reflection coefficient" he utilized his
edge wave corner diffraction coefficient in the calculation of double and
triple diffraction by two adjacent corners of a flat plate structure.

The vertex and edge diffraction of an electromagnetic wave guided along
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one of the edges of a semi-infinite wedge is studied asymptotically. A dipole
source radiates in the close vicinity of the edge and excites a paraxial field

guided by one of the edges of the trihedron - hence the term "edge wave".
Explicit expressions of this field are given in Section 3.2 based on the lia-'i,
iting behavior of the Green's dyadic for an infinite wedge [27] as the dipole
approaches its edge.

A first approximation of the vertex diffracted field is presented in Sec-
tion 3.3, based on the radiation of the surface qurrent that would be in-

duced by the edge guided wave for an infinite wedge, which is subsequently
truncated. The asymptotic evaluatiori of the ýurface current's radiation
integral appropriately encounters the edge wavelsingularity consistent with
Meixner's edge condition [28]. To the field expressions thus derived, a fringe
current effect, which is asymptotically incorporated in the radiation inte-
gral of Michaeli's fringe edge equivalent currents [15,4,29], is superimposed.
Edge wave vertex and edge diffraction coefficients can then be established
from the asymptotic field expressions. The pertinent analysis is developed
in Section 3.4.

The validity of the approach is confirmed via comparison with moment
method results and pattern measurements for a small dipole radiating in
the close vicinity of one of the edges of a polygonal plate.

3.2 Edge Waves

The term "edge waves" in the present work defines waves propagating along
the edge of a wedge. The edge wave is actually a form of a maxwellian field
guided by the edge, and exhibiting the proper edge singularity. Such a
paraxial singular field can be excited either by a plane wave at grazing
incidence, or by a dipole radiating in the close vicinity of the edge. The
vertex of a terminated edge illuminated by a plane or spherical wave can
also excite an edge wave. Independent of the excitation, but sufficiently far

from its source, the edge wave behaves and can be treated as a ray optical
field. However, application of ray optical techniques (UTD, UAT) is not
straightforward, mainly due to the singular behavior of the paraxial fields.

Let us consider the more general problem of a point source.ý = 9 btiS'-

r') radiating in the presence of a perfectly conducting infinite wedge. The
field produced by this dipole-wedgc configuration can be formally written
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as
E(= j) o wopow(, P)) .9, (3.1)

where r(r', r-) is the Green's dyadic for the wedge.

~DIPOLE

FACE I

Figure 3.1: Dipole radiating in the close vicinity of the edge of a perfectly

conducting wedge.

For convenience, the source point is located at S(p', 0', 0), (r' = p', ,8' =

wf/2), in the system of coordinates with the z-axis being coincident with the

edge and the z-axis parallel to face 1 of the wedge. The pertinent system of

spherical coordinates is then (r,13o, 0) (Fig. 3.1). Furthermore, let kr >> 1,

so that the spherical Hankel functions of the second kind involved in the

series representation assume their asymptotic form. The limiting form of

the field in Equation 3.1 for small values of the parameter e = kp'sinflo is

of interest here. After some straightforward manipulation it can be shown

that

EQ-) = jwopo C(v) (kp'sin o)#-. (0o cosf1o sin vO + 4' cosvO)

(p;, sin vO' + p', cos v4 ') exp(-jkr) +4 (0o) , (3.2)
r

where O(eo) denotes the zero order remainder in the power series expansion
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of the field. The constant factor C(v) is explicitly defined by

C(v) , r(2v + 2) exp{j(v + 1)w/2)} (3.3)
c ,f) /23,,+1 r(v) r(v + 1)r(v + 3/2)

and
I 21r - (WA) (34)V =- , fl= , (3.4)___

n 7r

while (WA) is the wedge angle. In the case of the half plane (v = 1/2),
Equation 3.2 reduces to the fcllowing expression:

-VI Zo exp(jir/4)E ~-) 27 f2-7 A' '(p',€

/o cos flo sin(u/2) + , cos(4,/2) exp(-jkr) ++06(°) ,(3.5)r 0

where
A•(pI, ,) - ~p', sin(O'/2) + p#, cos(O'/2)A"(p, ' (3.6)

is a constant source factor.
The leading term in the power series expansion of the field (the edge

wave), which will be denoted as E-w in the subsequent analysis, domi-
nates in the paraxial region and reveals the strong coupling between the
dipole source and the edge. It is a spherical ray optical wave that satisfies
Maxwell's equations, the boundary conditions on the perfectly conducting
surface, as well as Meixner's edge condition. The remainder 0(e0 ) can
be expressed in a clcsed form only for the case of the half plane and far
field observations. Specifically, it can be obtained via reciprocity from the
Fresnel integral (Sommerfeld) representation of the half plane canonical so-
lution after subtracting the edge wave term. In the case of a general wedge
angle, the remainder is essentially a power series of the small parameter
e, the coefficients of which can be derived from the eigenfunction series
representation of the Green's dyadic.
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3.3 The Radiation Integral of the Edge Wave
Currents in a Truncated Wedge

Clearly, the analysis of the waves associated with an infinite wedge does not
include the effects of finite or semi-infinite edges. First, the edge wave term
should be suitably modified so that the singularity, which results from the
infinite edge, is eliminated. Second, the vertex and the terminating edges
effects should be incorporated in the total solution. Asymptotically, the end
point effect is additively introduced into the total solution and corresponds
to a tip diffracted ray. On the other hand, the edge wave singularity is
compensated multiplicatively with the introduction of a proper transition
factor. Within this context, for a dipole radiating in the close vicinity of a
terminated edge and sufficiently far from the vertex, the total field can be
written as

ft Eew TE,+ +E +Ec, (3.7)

where T is a transition dyadic to be determined, Eje2 are the edge diffracted

edge waves associated with the two terminating edges, and Ec is the vertex
diffracted edge wave.

i OC s (0)

-• FA CE I

Figure 3.2: Geometry for the edge wave edge and vertex diffraction prob-
lem.

An approximation of the diffracted fields and an empirical determination
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of the dyadic T is now developed. The excitation dipole is located in the
close vicinity of the semi-infinite edge and sufficiently far from its vertex,
as depicted in Fie. 3.2. For convenience, our attention is restricted to the
diffracted fields associated with face 1 of the wedge. The results for face
2 can be readily derived by means of a simple transformation. Let j(r;)
be the total surface current flowing over the plane of face 1. The field
associated with this current can be evaluated via the radiation integral in
the Fresnel or Fraunhofer region of the surface, namely

i()=kzo/ .s R x R x•( exp(-jkR) di' (3.8)
151 X *j(-) 41rR '

where i, and •i is the vector from Qc pointing to the observation point and
the elementary surface patch ds', R? = (i,- r')/R, R -" Ile-,- ;1j. The
integration takes place over the truncated face of the wedge. It is assumed
that jj(rl) can be adequately approximated by the actual induced currents
as if the wedge was infinite, namely

r fHl / rls (3.9)

where H/"w(r) is the magnetic field produced by the dipole radiating in the
close vicinity of the edge of an infinite wedge and A, is the unit vector nor-
real to face 1. One may introduce the oblique system of coordinates (u, ti)
associated with the terminating edge (edge (1) in Fig. 3.2) and defined by
the unit vectors

u = i , t i= sinal - i cosal

with a,1 denoting the angle formed by the guiding edge and the terminating
edge (edge (1)). Then, sufficiently far from the dipole, and employing the
results of Section 3.2 one observes that

j(u, t) - jkVC(v)A.(p',4') sin`l 0o
exp( -jkro)- (i sin00 + i cos 00) , (3.10)

r0

in which

,o -- jsin2a + (u - t, cos 1, + ) 2 ,
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sinG 60  t1 sinca,/ro , coso= = (u - tj cosca, 9+)/ro,

A.(p', 0') = (p')"-(p:, sin vk' + pe, cos v4')

sa' is the distance of the dipole source from the vertex, and the constant C(v)
is defined by Equation 3.3. Based on the approximation in Equation 3.10 for
the current, the vertex diffracted field associated with face 1 of the wedge
and, essentially, representing the end point contribution to the radiation
integral in Equation 3.8, can be expressed as follows:

jkvZo sin'ai C(v)Ae,(p',O')F(2kLsin2 ) fist sin#f!,,(k)

EC.POVg) 47rs,(a' ,)v+1(1 - cos 0)

-(sin#cos a + sin a, cos/•cos 0) °_,,_a(k)]

+sinassink1i,,_,(k) } . (3.11)

In the above equation, 1/p(k) expresses the end point contribution to the
integral

_,(k) = j t'- exp {-jk(R + ro)I1.=o} dt,

which is examined in detail in (2]. For the specific semi-infinite wedge
geometry under consideration, the integral I/p(k) can be approximated by:

I°P(k) ; r(p)k-P exp(jpr/2) exp{-jk(Sc + s')}
F!-P[ka•('€ 0'1 (3.12)

(sina Isin//cos0 + cos a,(1 - cos)] ' ( )

in which

al(8'; 8") = -ign(1r -a,- #I) j~fý (8+8c) -(a',±+ 8)1 (3.13)

and a', 81 denote the distance of the dipole source point and the receiver
from the origin Q' of the Keller cone of diffracted rays from the terminating
edge (edge (1) in Fig. 3.2). The branch of the bracketed expression in the
denominator of Equation 3.12 is chosen according to

(-1)P = exp (jpir)
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The factor F(.) is the familiar edge transition function of UTD [131,
while the edge wave transition function Fc,(• 1) is defined by

F!(.T) = exp(jpir/4)(2--)P/ 2 exp(jz/2) V..[exp(jir/4)v/z] , (3.14)

with VD.p(.) denoting the parabolic cylinder function of order -p [30,31].
When z > 0 is small

F_•(x) - vir exp(jpir/4) zP/r exp(jz/2).

[ 1 2exp(jir/ 4 ) j(p-1/2) (3.15)
P(P1) [(P)

S1 --'7 + +.- 3.5

and when z is large

FP(z P+) Ap(p+l)(p+2)(p+ 3 )

4jz 32z 2

Retaining only the dominant term in the expression of the vertex diffracted
wave (dominant with respect to the parameter 2ks9') and assuming the ap-
proximation [32]

1 , 2 + l,2 _ (' + sc) - L, [1 + cos(al,2 + 013,2)], (3.17)

for large values of the distance parameter L, = sca'C/(s, + .,'), one obtains
the following expression for the vertex diffracted field, in terms of the edges
(1) and (2) fixed coordinate systems:

exp (jvir/2) I(v) C(v) Eý,(Qc) sin vo'' + Eý,(Qc) cos v0*'E'P(-)k sinl-v)3ff

13 j f lT ' 2L 1n . Jsin' aFc , [2kL, cos 2 (f t-A )]
Scotq (kcsn28-2

sin'Q 2 FcI, 2kLcCos 2 ( 200 )] ' exp (-jk.) • (3.18)
"+ (cos Q2 + cos/32)" J " 3

In Equation 3.18, E0,,O(Qc) represent the components of the free space
dipole field at Qc with respect to the guiding edge fixed coordinate system.
We refer to the above term as the physical optics component of the vertex
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diffracted field. As a matter of fact, the above UTD form of the vertex
diffracted wave is derived from currents determined from the interaction of
the dipole source and the guiding edge only. The effect of the terminating
edges, clearly, has not been included yet. It should be, however, emphasized
that this terminology should not imply any connection with the common
Physical Optics approach, where the surface current is approximated with
the superposition of the tangential component of the superimposed incident
and reflected magnetic fields.

3.4 An Equivalent Current Approach

It can be easily shown that the surface radiation integral in Equation 3.8 can
be asymptotically reduced to a line integral along the terminating edges of
the semi-infinite structure. Thus, the high frequency approximation of the
edge and vertex diffracted fields can be viewed as the stationary phase and
end point contribution, respectively, of the radiation integral of equivalent
line sources "excited" by the impinging edge wave. As far as the "physical
optics" effect described in Section 3.3 is concerned, the same expression
for the field, excluding the factor F[2kLc sin 2 (fl/2)], can be obtained via
the asymptotic approximation of the line radiation integral of the physical
optics components of Michaeli's equivalent currents flowing along edges (1)
and (2) and being proportional at each point to the tangential components
of the incident edge wave. This observation suggests the addition of a fringe
effect to the physical optics diffracted field which is, similarly, described by
the radiation integral of Michaeli's fringe currents. Although the latter
have been derived for plane wave incidence, reasonable results are obtained
if one generalizes the same concepts for arbitrary (non-uniform) ray optical
wavefronts and, hence, for an edge wave singular at the edge.

As before, our attention is restricted to face 1 of the wedge. The equiv-
alent edge currents presented by Michaeli [15,4,29] for grazing edge wave
incidence at the point Q1 of the edge (1) may be expressed in the form

2j RwQ il
11(QI) = 2j 2 i1(Q0) (3.19)

MI(Q)-2jZo He(Q) m(Q 1 ) (3.20)

2
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il is the unit vector tangent to the edge at Q1 and il, m, are known and,
in general, slowly varying functions of the observer's location in the vertex
fixed coordinate system and the distance of Q, from the tip QC of the tri-
hedron. A factor of 1/2 should be also introduced due to grazing incidence
[13].

It is presumed that the edge and vertex diffracted edge wave associated
with face 1 of the wedge can be approximated by the radiation integral of
the equivalent currents II(Qi), M1 (Q1 ) flowing along the edge (1), which,
in the Fresnel or the Fraunhofer region of the edge, can be explicitly written
as

Ej(ic) - jk' ZO sin' a,(v)A,(pk') s

Jf1 [k Xk X i ii VC; ti)+ Ax i MI (aC; ti)]
. exp{-jk(R+r1 )} dt, (3.21)

4 7rR rv ,+' '

with R = IIc' - tijil and =', - tij&)/R.

3.4.1 Edge Wave Vertex Diffracted Field

The phase of the integrand in Equation 3.21 exhibits a stationary phase
point in the neighborhood of an end point, the latter being coincident
with the branch singularity of the integrand. Therefore, for large values of

the parameter k the asymptotic evaluation of the integral reveals a vertex
contribution as well as an edge diffracted term, if

cos a, (1 - cos 0) + sin a sin/# cos 0 > 0,

i.e., if Q' lies on the edge (1) itself rather than on its extension. Without

presenting the details of the asymptotic approximation, one obtains the
approximate vertex diffracted field, associated with face 1 of the wedge

exp{-jk(sqc + s',)}
E'(4) ; exp{j(v+ 1)l/2}r(v)C(v)Zoa"(p',+') 4Cp- (s+)}

F*,[a C C¢ ') (3.22)

)cot ai(1 -cos) + sinI3cos (3.22)
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in which we have substituted

Gcl(S-) = S, x iiii(QC) + SC x ilril(QC) (3.23)

The previous discussion also suggests the decomposition
if (f)

£ (QC) I (QC;IA) }+ { 1(Q ;10)
m (QC;{+mIQc4)(Q;}+} (3.24)

and ii(Qc), mi(Q'), iPo, (Qc;,t ), mPI(Qc;g ,f) can be obtained from
[15,4,291 along with the definitions in Equations 3.19 and 3.20. The pa-
rameters A'!' involved in the expressions of the edge equivalent currents
depend on the choice of the edge fixed coordinate system and, in particular,
on the angle between the tangent to the edge at Q, and the unit vector 6
tangent to face 1 at Q, which may be chosen arbitrarily. When the currents
are truncated to reveal an end point effect, one should be cautious about
the choice of the parameters gp"f, i.e., the choice of the edge fixed coor-
dinate system, so that the terminated equivalent edge currents represent
correctly the end point effect of the truncated, by the edges of the trihe-
dron, true surface induced currents. Within this context, a correct choice
of the parameter A4o for the physical optics component of the equivalent
currents is

PO sin a1 sin#/, cos 01 + cos al(cosIpi + cosal) (3.25)
sin2 al

so that the unit vector & is parallel to the guiding edge, whereas for the
fringe currents the proper choice is

f sina 1 sin/31 cos4l - cosal(cos/pi + cosal) (3.26)
sin

2 ol

and, now, & is parallel to the edge diffracted ray from Qc that grazes the
plane of face 1. Not surprisingly, using Equation 3.25 for the definition of
the parameter A', in the expressions of the physical optics equivalent edge
currents one finds

2.P*(3•) cot (3.27)2'
so that the vertex diffracted field assumes the approximation

E' E ,o(ic) + Ec,"(i) (3.28)
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in which !•''(K) is identical with the term associated with face 1 in Equa-
tion 3.18, while the fringe currents related wave is equal to

Pt(C) exp{j(v + 1)lr/2}1 (v)C(v)Zo A,(p,4,') sin" ai
exp{-jk(sc + s')}

4ij (S ))~ F(2kL, sin 2 )
41rs (,q')' 2)

( K' g),F7%[kal(c _ -' L (3.29)
(cos a, + Cos h)u

The vector function G'/(S'c) is related with Michaeli's equivalent currents
at QC via the equation

dC,•'=(K) = i +(Qc;.I) ic x ic x i + 4 AS (3.30)

The above expressions simplify considerably for the case of the plane
angular sector, with a, = a2 = a,at a-= a2 = a. Without presenting the
details of the derivation, which involves only elementary manipulations, for
the field related with the fringe currents one derives

•c-j(•) A•e-,)o exp{-jk(sc + s')}
~dc ... A-p' 2(g '

F(2kL~~~sin20/) "('a) FC-/2 [ka(i;')F(2kL sin ) (3.31)

2 Vcota(1 -cos3) + sin# coso

~ • where the function Gcf(.f) is given by
0.•I-

1 fCe(/f + 4~f,)
• ":/(SC) = cos(2a) + cos/f b +sin asinf1 cos(6/2)

" ~(3.32)

-' *'D with
cos 6 = sin(2a) sin/3 cosO - cos(2a) cos/3, (3.33)

eo(#, Ob) -(cosa+ cosfl) (sin a cos/3cosO + cosasin3)
•[sina• cos 1(1 - cos a cos01 ) - cos 2 a•sin)9 1]

+ sin' a sin 0 sink1 , (3.34)
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eo(fl,4) - sin a sin 0 (cos a + cosI3 1 )

-[sin a cos 01 (1 - cos a cos/3)-cos 2 a sin]

+ sin 4 a sin 41 (sin a cosO cos 0 + cos a sinf3). (3.35)

For the particular case of the right angle angular sector (a = 7r/2), it
readily follows that

G f(,; 7r/2)= ct - csc 2 (3.36)

and the total corner diffracted field assumes the simple representation

-j Zo exp{-jk(sc + _9')}E c( .-,) ;::: v /2- 7r A (p ', 0 ') 4 r .9c V / _9ý

F(2kL, sin 2 P) F71 / 2 [kL,(1 - I - sin 2 # COs2 )]

sin 2_ Vsln-# cos2

(3.37)

where Ae(pl, )') is defined by Equation 3.6.

3.4.2 Edge Wave Edge Diffracted Field

It can be shown that the edge diffracted field, i.e., the stationary phase
contribution to the radiation integral of Michaeli's equivalent currents, is
the edge diffracted edge wave predicted by UTD, multiplicatively corrected
by the transition function

F_-I [2kLe, cos 2 ("1 +

where
F•_1 (.) = [F•_I~(.)J* (3.38)

with the star denoting complex conjugate. The large parameter Le, equals

3131

L = - (3.39)$I +a'

The transition function F- 1 (.) guarantees the finiteness of the edge diffracted
edge wave as QI -+ Qc and the uniformity (continuity) of the total field
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as the "shadow boundary" of the edge diffracted rays (the cone [cct al(1 -

cos /3) + sinfl cos 01 = 0) is crossed. It appears as a type of caustic cor-
rection factor in the sense that it compensates the singularity of the edge
diffracted field at the extension of the guiding edge. However, in our case
the singularity arises from the behavior of the incident field on the edge
rather than the focusing of the diffracted rays into a caustic.

3.4.3 A Heuristic Correction Factor for the Direct
Edge Wave

As pointed out earlier, the rigorous solution of the radiation of a dipole
in the presence of an infinite wedge predicts a singular field at the edge

of the wedge, in consistency with Meixner's edge condition. However, this
singularity of the edge wave is not physically acceptable when fl --+ 0. To
overcome this discrepancy, the multiplicative correction of the edge wave
associated with a semi-infinite or finite edge with the use of a suitable tran-
sition function (in general a dyadic) has been suggested. Such a transition
function can be empirically derived by requiring the continuity of the total
field at the shadow boundaries of the direct wave (edge wave), namely at
the planes 01,2 = 7r. This continuity was guaranteed by the UTD evalu-
ation of the edge diffracted field, but it is violated in the paraxial region
after the introduction of the function Fe-,, which assures the uniformity
of the total diffracted field. Obviously, the edge wave can be multiplied by
a similar transition function so that the total field retains its continuity in
the paraxial region as well as outside of it, where the transition function
recedes tc, unity. In addition, such a multiplicative correction would yield
a finite total field along the extension of the edge.

In particular, for the plane angular sector, a convenient modification of

the edge wave, in the extcasion of the guiding edge, reads

Ee,(i•) i� vZoexp(jir/4)

•do cos Oosin(0/2) + ý cos( i'2)]

F,_i/ 2[2kLe sin 2 )_] exp(-jkso)- . . .. . . (3.40)

,ý/_s _n~o80

with .0 denoting the distance of the observation point from the dipole and
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#0 is the elevation angle of the observer in the guiding edge fixed coordinate
system centered at the point of the projection of the dipole onto the edge.

3.5 Discussion and Numerical Results

The edge wave vertex diffracted field is a higher order term with respect to
the large parameter k in the asymptotic solution of the radiation of a dipole
in the vicinity of the edge of a trihedron. Nonetheless, it contributes signif-
icantly to the /-directed component of the field, especially in the paraxial
region of the guiding edge and along its extension. This is due to the ac-
cumulation of electric current flow lines in the vicinity of the guiding edge
excited by the ray optical edge wave.

The solution, based on Michaeli's equivalent currents, is essentially an
asymptotic PTD approach, in that a fringe current effect due to the ter-
minp.ting edges is added to the edge wave currents, cast into a UTD form.
The rigorousness of the approach may be questioned at this point, since the
derivation of the fringe edge currents assume an infinite edge and uniform
plane wave illumination. However, the field is expected to retain its siagular
behavior in the vicinity of the vertex, which, moreover, does not contradict
the "tip condition" (i.e., the behavior of the field in the neighborhood of
a vertex) as investigated rigorously by several authors. It should be em-
phasized that the approximations attempted in Sections 3.3 and 3.4 by no
means present a complete rigorous representation of the tip diffracted field,
but it merely includes the information of the truncation of known compo-
nents of the currents flowing over the wedge surface and can serve as a good
engineeriug approximation to the problem. Again in a PTD context, the
completeness of a solution requires the addition of a vertex current compo-
nent, i.e., a current excited by the vertex of the trihedron, which however
remains unknown.

The patterns of the total diffracted field predicted by the "Physical Op-
tics" solution and the equivrdent currents approximation, for the configu-
ration shown in Fig. 3(a), are compared in Fig. 3.4. Clearly, the "physical
optics" tip diffracted wave is not adequate to compensate the discontinuity
of the edge wave edge diffracted field. On the other hand, the equivalent
currents result yields a continuous pattern across the shadow boundary
cone of the terminatIng edge diffracted rays, and appears as a more com-
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plete representation of the diffraction effects.
Comparisons of the calculated field (which includes only the two edge

wave tip diffracted terms corresponding to the two adjacent corners added
to the modified direct edge wave) via Michaeli's equivalent currents (de-
noted as MEC on the graphs) and the "Physical Optics" approach (PO)
with moment method results (MM) are made in Figs. 3.5-3.8, for the
square plate shown in Fig. 3(b). The direct edge wave (EW) as given
by Equations 3.5 and 3.6 is also plotted so that the effect of the corner
diffracted fields is better illustrated. Note that in Fig. 3.7 (where 4, = 450)
the edge wave edge diffracted fields should be also added to the corner
diffracted fields. The dipole is placed in the close vicinity of one of the edges
(p' = 0.01A) of the plate and sufficiently far from its corners (.', > 2A). The
agreement is good, especially in regions where contributions from other
diffraction mechanisms other than the corner adjacent to the guiding edge
are known to be negligible. In fact, as shown in Figs. 3.5-3.7, the agreement
between the moment method data and the calculated field progressively
improves for larger values of the 4' angle. For 4, = 450 (Fig. 3.7), other
mechanisms such as diffraction from the remote corners of the square plate
as well as double and triple edge diffraction may contribute significantly
to the pattern. Our approximation also improves when the paraxial re-
gion is approached (P3 -- 0', 1800), where, as a matter of fact, the total
field is stronger. The latter justifies the validity of the asymptotic analysis
which resulted in the multiplication of two transition functions as well as
the choice of the correction factor for the direct dipole field. Unfortunately,
the 4,-directed field does not exhibit an analogous agreement (Fig. 3.8), at
lower azimuthal cuts, due mainly to the fact that the analysis did not in-
clude secondary mechanisms which, clearly, contribute significantly to the
pattern of that polarization. However, the small angular variation of the
pattern in Fig. 3.8, which is a typical 4, component pattern for 4, > 900,
indicates that the corner associated 4,-directed fields are sufficiently weaker
compared with the ý component of the direct edge wave and can be ne-
glected in practical calculations.

The results also reveal a small variation of the total field with respect
to the azimuthal coordinate (angle 4,), in contrast with the relative large
changes of the calculated pattern in the elevation plane. The 4, dependence
becomes significant only at lower cuts where the contribution from the
opposite edge and its two adjacent corners is appreciable.
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The secoznd examnple extunined involves also the radiation of a small
monopole in the close vicinity of one of the edges of a rectangular plate,
but now with different distances from its corners. The geometry of this
monopole-rectangular plate configuration is depicted in Fig. 3(c). The cal-
culated field is compared again with moment method results as well as mea-
sured data, as shown in Figs. 3.9 and 3.10 in the azimuthal planes 4 = 1800
and 4, = 1500, respectively. The accuracy of the measured data deterio-
rated in smaller azimuthal angles, where the support structure influenced
significantly the measured radiation pattern. In Fig. 3.9, an absorbing ma-
terial has been placed around the remote corners and the opposite edge of
the rectangular plate, so that their effect in the total pattern is reduced.
Clearly, the agreement is better in this case (Fig. 3.9), in contrast with the
results of Fig. 3.10 where the ram was removed.

It should be noted that neither the "Physical Optics" solution nor the
equivalent current formulation are expected to yield accurate results for
small angular sector angles (a << 7r/2). In this case a strong coupling
between the two edges forming the sector occurs, which is not encountered
in the evaluation of the radiation integral of the currents flowing along the
edge (1). Moreover, when a -- ir, the Physical Optics corner diffracted field
vanishes and the total solution reduces to the edge wave over an infinite
wedge, whereas the same property is not true for the equivalent current
formulation of the vertex diffracted field. The latter, therefore, fails in
cases of very wide angles, which require a more careful treatment.

3.6 Conclusions

The major objective of this study was to describe approximately the edge
wave diffraction mechanisms associated with the interaction of an edge wave
and the vertex of a trihedron as a first step to the approximation of more
complex geometries. A dipole radiating in the close vicinity of one of its
edges produces an edge wave which behaves essentially as a ray optical field
in the vicinity of the vertex. To approximate the vertex diffracted wave a
UTD solution was developed based on a Physical Optics like approach to
defining the currents. The addition of a fringe current component flowing in
the vicinity of the terminating edges, yields a continuous radiation pattern
across the shadow boundaries of the edge diffracted waves. Although, the
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approach is neither rigorous nor complete from a PTD point of view, cast

in UTD form, it yields comparable results with moment method as well
measured data and can be used as a first engineering approximation to the
edge wave edge and vertex diffraction problems.

This method can be possibly extended to the examination of the double
corner and corner to edge edge wave diffraction mechanisms, with several
practical applications. The latter, being also a possible extension of the
present GTD, so that it may incorporate higher order diffraction mecha-
nisms, awaits future work.
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Figure 3.3: Flat plate geometries examined for the comparison of the cal-
culated field with moment method and measured data: (a) Angular sector,
(b) Square plate with the dipole in the center of one of its edges, (c) Rectan-
gular plate with the dipole at unequal distances from the adjacent corners.
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Figure 3.4: Far region edge and vertex diffracted #3-directed field for the
angular sector geometry of Fig. 3(a) at the cone ~3=850.
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Figure 3.5: Far field /O-directed wave radiated by the dipole of Fig. 3(b) at

the azimuthal cut 4 = 180'.
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Figure 3.6: Far field Ol-directed wave radiated by the dipole of Fig. 3(b) at

the azimuthal cut •b=1350.
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Figure 3.7: Far field /-directed wave radiated by the dipole of Fig. 3(b) at

the azimuthal cut 4b = 45'.
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Figure 3.8: Far field a-directed wave radiated by the dipole of Fig. 3(b) at

the azimuthal cut 4b = 1200.
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Figure 3.9: Far field O-directed wave radiated by the dipole of Fig. 3(c)
at the azimuthal cut 0 = 1800. Solid line: Calculated field, Dashed line:
Measured field, Dotted line: Moment method solution.
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Figure 3.10: Far field O-directed wave radiated by the dipole of Fig. 3(c)
at the azimuthal cut =1500. Solid line: Calculated field, Dashed line:
Measured field, Dotted line: Moment method solution.
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Chapter 4

Summary

This report summaries two theoretical studies pertaining to the scattering
from flat plate structures. A new far zone corner diffraction coefficient has
been developed and tested against existing solutions, method of moments,
and measurements. It has been shown to be very useful and accturate
for backscatter and especially for bistatic scattering where many of the
previous methods give less accurate results. A new method for determining
an edge wave - vertex diffraction coefficient for source excitation has also
been developed. It is tested against method of moments and measurements
with excellent results. This is an intermediate step for determining a far
zone edge wave solution for which preliminary results are being tested.
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